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Abstract

The experimental evidence for self-trapping of amide-I (CO stretch-
ing) vibrational energy in crystalline acetanilide (a model protein) is
reviewed and related to A. S. Davydov's theory of solitons as a mechanism
for energy storage and tramsport in protein. Particular attention is
paid to the construction of quantum states that contain N amide-I
vibrational quanta. It is noted that the "N = 2" state is almost
exactly resonant with the free energy that is released upon hydrolysis

of adenosine triphosphate.



INTRODUCTION

In living organisms a fundamental mechanism for the transfer of
energy into function proteins or enzyme: is the hydrolysis of adenosine
triphosphate (ATP) into adenosine diphosphate (ADP) according to the

reaction

ATPY + H,0 ADE™3 + HPOZZ +H . (1.1)

Under normal physiological conditions about 10 kcal/mole or .422 ev of
free energy is released by this reaction (Fox 1982), leading to several
interesting questions: How is this free energy transferred into protein?
How is it stored there? How does it move inside a protein? How is it
transformed into useful wcrk?

To answer questions of this sort a theory was proposed by Davydov
and Kislukha (1973) which focused attention on the self-trapping of
molecular vibrational energy in the amide-I (or CO stretch) vibration
of the peptide unit (CONH), a basic sctructural element of all proteins.
Roughly speaking, it was proposed that the loca.ization of amide-I
vibrational energy would alter the surrounding structure (primarily
the hydrogen bonding) and that this local alteration would, in turn,
lower the amide-] energy enough to prevent its dispersion.

At about the same time as the original paper by Davydov and
Kislukha (1973), Careri (1973) published some unexpected cpectral
measurements in the amide-I region of crystalline acetanilide
(CH3C0NHC6H5)x or ACN. as the temperature was lowered from room

temperature, he observed an anomolous am:de-I band (a: 1650 cm-1

)

growing up on the red side of the no-mal amide-I band (at 1665 cm~1

).

This 1650 ¢:m-1 band was ca!led anomalous because it could not be



explained with accepted concepts of molecular spectroscopy (e.g. Fermi
resonance, Davydov splitting, etc). At first Ca-eri suspected some
unusual one dimensional phase transformation might provide an explana-
tion, but no such evidence was found after several years of experimental
work. Recently a seif-trapping theory was proposed (Careri, et al.
1983) which is closely related to that of Davydov and explains the
salient experimental facts (Careri et al. 1984, Eilbeck et al., 1984).

The present situation, therefore, is that the 1650 cm-1 band in
ACN sesms to provide direct experimental evidence for a self-trapped
state of molecular vibrational energy. The "red shift" of 15 cm_1 from
the normal band can be considered as the binding energy of a Davydov-
like soliton, and this interpretation leads (o quantitative predictions
of biological significance.

This paper is organized into three broad phases. The first is a
review of Davydov's soliton theory and the experimental observations in
crystalline acetanilide. The second phase is a detailed comparison of
various attempts to provide a quantum mechanical explanation for self-
trapping of molecular vibrations. Finally some questions of biological
significance are briefly considered.

Before turning to the details let me interject & comment on the
nature of research in biophysics and in biology. Biophysics, in my
view, is different from biology. Biophysics attempts to make known the
mechanisms that are possible in biological organisms and those that are
not. Given this "menu of possible mechanisms" it is the task of true
biological research to make known what actually happens in an organism.

This paper is primarily an exercise in biophysics.



LAVYDOV'S SOLITON THEORY

This section is irtended to provide a brief summary of Davydov's
soliton theory for the convenience c¢f the reader. Such a summary is
helpful to appreciate the differences between the theory of seli-
trapping proposed for proteins and the theory proposed recently to
explain experimental measurements on crystalline acetanilide. It is
also necessary in order to see how the quantum theory developed by
Davydov as a basis for self-trapping is related to other quantum
analyses. Several detailed surveys of this work are available for
further reference (Davydov 1979a and 1982b), and a somewhat more general
analysis has recently been published by Takeno (1983).

Consider the alpha-helix structure of protein that is shown in

Fig. 1.

Figure 1 here (for legend see p. 26)

Careful inspection reveals three channels situated approximately in the
longitudinal direction with the sequence

etc. H-N-C=0---4-N-C=0---H~N-C=0---H~N-C=0 etc.
where the dashed lines represent hydrogen bonds. One of thece chanmnels
is cross-hatched on Fig. 1. For a detailed analysis it is necessary to
consider the interaction of all three channels, but one is sufficient
to lay out the basic ideas.

A single channel is governed by the energy operator

A= HCO + th + Him } (2.1)

(Throughout this paper the circumflex will be used to indicate an



operator.) Taking the components of R in order, R_._. is an energy

co
operator for the CO stretch (amide-I) vibration including the effects

of nearest neighbor dipole-dipole interactions. Thus

onn n+l

_ te st pesT
Rgo = 2 1E,816,-3(B, 8157k 1)) (2.2)

where Eo is the fundamental energy of the amide-] vibration, -J is the
nearest neighbor dipole-dipole interaction energy, and BI(Bn) are boson

creation (annihilation) operators for amide~I quante on the nth mole-

cule.
th is the energy operator for longitudinal (scoustic) sound waves.
Thus
_ 1o oyt da2iges o 42
th 7 i M " +W(d -i _)%] (2.3)

where M is the mass of a molecule, W is the spring constant of a hydrogen
bond, ﬁn is a longitudinal momentum operator for the nth molecule, and
ﬁn is the corresponding longitudinal positior operator.

Interaction between amide~i vibrations and longitudinal sound

waves occurs through the interactiun energy operater

- n _a T
int - Xa 2 (un un-l)Ban (2.4)

where X, is the derivstive of amide-1 vibrational energy with respect

to the length (R) of the adjaceut hydrogen bond. Thus
X, = dE_/dR . (2.5)

Values for the parameters in these equations are listed in Table 1.



Table 1. Physical Parameters for Davydov's Hamiltonian

Parameter Value Unit References
E0 .21 eV (Nevskaya & Chirgadze 1976)
J 7.8 em”? ditto
M 114 m, (Scott 1982)
W 13 N/m (Itoh & Shimanouchi 1972)
X, 6.2x10" 1! N (Careri et al. (1984)

It is interesting to observe that this is a biological problem for
wiiich all the physical parameters have been determined.
Davydov minimizes the average value of R with respect to the wave

function

4> = I a_(t) exp[B(t)16] 0> (2.6)
n

where

6= - I 1B (B, M, (V3,) . (2.7)

A straightforward calculation show." that

B,(t) = <yli_ly> (2.8)

and

nn(t)

Wlp, 1w . (2.9)

The wavefunction in (2.6) will be called Davydov's ansatz throughout

this paper. One ot the aims here is to study the range of validity of

this ansatz.



Assuming that Davydov's ansatz approximates the true wavefunction,
(2.8) and (2.9) show that Bn and n are the average values of the posi-
tion and momentum operators respectively. Furthermore a is the
probability amplitude for finding a quantum of amide-I vibrational
energy on the nth molecule. The normalization condition <y|y> = 1

implies that

Zla |"=1. (2.10)

Thus Davydov's ansatz describes the dynamics of a single quantum of
amide-I vibrational energy.
Minimization of <y|RA|y> with respect to a_, B, and M leads to the

differential difference equations
Ly d -
(i dat - Eo)an * J("’1n+l+an-1)-xa(ﬂn-Bn-l)an =0

MB_ - W(B_,,-28.%B ) = X [la_, 1%-1a_17] (2.11.)

n

Extensive numerical and theoretical analysis of (2.11) yields the
following results (5 -tt 1982 & 1984, MacNeil and Scott 1984): i) It is
reasonable to expect soliton formation at the level of energy released
by ATP hydrolesis (1.1), and ii) Such 8 soliton travels rather slowly
with respect to the speed of longitudinal sound waves. This suggests
neglecting the kinetic energy of longitudinal sound by assuming ﬁn = 0,

whereupon

. X
B - B, = -2 a1 (2.12)

and, in this '"adiabatic approximation", (2.11) becomes



d . 2
(if at Eo)an + J(an+1+an_l) + yalanl a = 0 (2.13)
where
2
Xg

Davydov has emphasized that a solitary wave solution of (2.11)
cannot be created directly by absorption of a photon because of an
unfavorable Franck-Condon factor. This is because the necessary inter-
molecular cisplacement in (2.11b) cannot occur ir 8 time that is short
enough for photon absorption. The Franck-Condon factor will be dis-

cussed in detail in the following sectioa.
SELF-TRAPPING IN CRYSTALLINE ACLETANILIDE

A unit cell of crystalline acetanilide (ACN) is shown in Fig. 2.

Figure 2 here (for legend see p. 26)
Just as in the alpha-helix, careful inspection of Fig. 2 reveals channels
situated in the b-direction with the sequence
etc. H-N-C=0---H-N-C=0---H-N-C=0--~H-N-C=0 etc.
Recent infrared absorption measurements on microcrystals of ACN

are shown in Fig. 3.

Figure 3 here (for legend see p. 26)
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Attention here is focused on the band at 1650 cm™! which rises with
decreasing temperature to become the dominant spectral feature below
100K.

When this band was discovered, Careri (1973) suspected it to be
caused by a subtle phase change along the b-direction of the crystal,
but careful studies over a period of several years (Careri et al. 1984)
failed to reveal any such evidence. The lack of a viable alternative
eventually led to the suggestion that the 1650 cm-1 band might be caused
by direct absorption of an infrared photon into a self-trapped state
similar to that proposed by Davydov. The qualifier "similar" is impor-
tant because, as was noted above, the Franck-Condon factor is unfavor-
able for direct photon absorption by a self-trapped solution of (2.11)

The corresponding theory proceeds, as in the previous section, by

defining the energy operator
A=A +R8 +8 (3.1)
where HCO is again given by (2.2) but with (Eilbeck el al. 1984)

1

J=3.96 cm (3.2)

In the present analysis, however, self-trapping is assumed to be caused
by interaction with an optical phonon rather than an acoustic puonon,

Thus

+wq ] (3.3)

and

A =y 3a66 . (3.4)
n
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Minimization of <PiA{y> with reapect tn Lhe parametein of the

Davydov ansa'z wave function (2.6) where
i " .
b M i lqn(")pn'pn(”qnl

leada to the dynamic equationa

d . - -
(1K a Il'())"u ' J(‘nil’“u-l) Koty 0

mg, - wq, X Ia l' .

n o n

An hetore
a, (1) = Sl e

The adiabat ic approximation (&" = 0) e lween (2 0) Qo

d . P
CIR T hn)“n ' Jln".|'n“_|) ' ynl"nl " h
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We turn next to an estimate of the Franck-Condon factor for direct
photon absorption by a self-trapped state of (3.6). Before absorption
lanl2 » 0, and after absorption Ianl2 g % over a locsllzed region such
that (2.10) ia matinfied. Thus the ground atate wavefunction of (3.6b)

muat shift from

o« [ ol il

heloie abaorption to

: - [n;m]" exy [.(.,".y““"ﬂ)" Quw] (3.12)

atter abmor) (an wheve
"W o= (u/nl‘ (4.13)

ta the Lisquancy of the optical meode that v mediating the melf=trapping.
The Viavattton probability tor nobtton aberption (a theretfore reduced

v e Foane b Conlbon Tacto
' """*'Nn'lln'J N II'!(* ‘“/"'m' . (s 14)

whte', 42 Joas bt unily fm

T (v. 1)

Whe orgamnny () od the wgd boa mode can We adetoimined From the
bomporaburr dupsndenee ol the 1A v m : bine 40 Fog T Rih tamprratine
dipondence (o sapiited, hecavae the penbabeboty of (0 AW) heing 0 1la

1]

@trvnmd sbate  and thoowlurr abile bo papdtoipate o anlt drapping, ta

Pomept P Hil\ thne as tomprratoie 10 . ateed, the Jow tamprratnee
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factor given in (3.14) should be reduced by the additional factor
ll-exp(-HkaT)lz. A least square fit to intensity data of Fig. 3 is
obtained for Ww = 131 cm™!. Together with (3.10) this implies
exp(-yolzuw) = 0.84.

Furthe. evidence tending tu favor n self-trapping explanation for
the 1650 cm-1 band is the receat observation of the overtone series shown

in Table 2 (Scott et al. 1985).

Table 2. Overtone Series for the ACN Soliton

N v(N)

1650 cm” ) (.205 eV)
3250 (.403)
1804 (.596)
6311 (.782)

£~ W 1o =

Since the overtones N > 2 are in some sense self-trapped states involving
more than one qusnt:um of the amide-]1 vibration, it is interesting to

conmider welf-trapped states that avoid the constraint of (2.10).

THE GUANTUM THENRY OF SELF-TRAPI'ING

In this section we approach the problem from a clasnical pern-
pective (Takeno 1984). Starting with the clasnical amide=1 coordinates,
P" and Q". for which the Hamiltonfan in ﬁ iPﬁ#Q;I y 1L I8 convenfent to

define the complex mode amplituden
= Y
Ay = i) (4.1)

In teamn of Lhewe complex mode amplitndes (including dipole=dipole inter-

act{onn)

LTI Y WYY (4.2)

K
)
"uu : 'l 'An ne M A



i

where
w, = Eo/l (4.3)

is the classical oscillation frequency of an amide I vibration. (From
here on we will assume f = 1 and measure energy and frequency in the

same units.)

Witl. 8 classical interaction energy

- 2

where q, is the coordinate of some low freguency phonou with adiabatic

energy
Sl 2 \
th‘ zwiqn ' (4.5)
one arrives at the total classical Hamiltonian
H= HCO + th + Hint . (4.6)
Minimizing (4.6) with respect to the q, requires
I ¢ 2 .
q, = - X1l (4.7)
vhereupon (4.6¢) can be reduced to
Wm3 kA2 - S A AL - 3 yia Y ) 14.8)
" oo™ N+l h o nontl p YA, A
vhere
2
y 8 X . (4.9)

w



15

The corresponding dynamical equation for An is
GL -E)a +JA, +A ) +yla A =0 (4.10)
dt o’n " ‘'ntl "n-1 n' ‘n ’ ’

In addition to the energy, H, another constant of the motion along solu-
tions of (4.10) is the number

N=3lal?. (4.11)

n

To this point the discussion of th~ present section has been
entirely classical. We now consider quantization in four special
cases: i) J << vy, ii) y << J, (iii) Bohr-Sommerfeld quantization, and
iv) The Davydov ansatz. In each case it will be of particular interest
to calculate an overtone series cotrespondiné to that presented in

Table 2 for crystalline acetanilide.

The case J << ¥

In this case we neglect the dipole-dipole interaction terms in (4.8)

and (4.10), and write the energy

H=1 hn (4.13)
n

where
2 1 4 .
hn = Eo'An. 2 Ymnl ’ (4.13)
Under quantization, the terms in (4.12) become operators
noov b (4.14)

through replacement of the complex mode amplitudes by creation and

sunnihilation operators for bomons. Thuw



(4.15a,b)

Since the ordering of these operators is not determined by (4.13),

we take the averages

a2 » %(BTB+BBT) (4.16)
1a1% » 16"6766 + 6768 + 576667
+ 667667 + 65676t + 5576 TH) . (4.17)

where the subscripts have been dropped for typngraphical convenience.
Noting that 67 and 6 ave the properties BT|N> = JN+1|N+1> and B|N> =
JNIN-1> (where |N> is an harmoric oscillator eigenstate), it is

straightforward to show that

B = (E-3v)(4#5'B) - Jys'e6Ts . (4.18)
Thus

RIN> = E(N)IN> (4.19)
where

EN) = (E-gn) (M) - 2o (4.20)

In summary, eigenvectors of the operators defined through (4.13),
(4.14), (4.16) and (4.17) are identical to those of an harmonic
oscillstor, but the corresponding eigenvalues are given by (4.20).

The form of (4.20) in wignificant. It can be written
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c L NL

E(N) =E" +E” + E (4.21)

where EC is the ground state (N=0) energy, EL a N and

BV = - Lyn? (4.22)

This "nonlinear" contribution is directly measured from the overtone
series in Table 2.

The case y << J

In this case the classical equation (4.10) reduces to the nonlinear
Schrodinger (NLS) equation of soliton theory. To see how this goes,
assume the repeat distance between molecules is d and replace the
discrete variable n by a continuovus variable, x = n, which measures

distance in units of d. Then (%.10) tekes the form

2
. 9”A
(15—{ EO+2J)A+J5—§
X

+ ylAl%A =0 . (4.23)

Quantization of this equation was originally performed using the
Bethe ansatz method and recently it has been shown that such solutions
can be efficiently constructed from a quantum version of invarse
scattering theory (Sklyanin and Faddeev 1978, Thacker and Wilkinson
1979).

Under quantization, the functions A and A* are replaced by
anmihilation and creation operators for boson fields, $ and OT. At
equal times these have the commutation relations [($(x),8(y)] =
(QT(X),QT(V)I = 0 and (Q(x),Q*(y)l = §(x-y). In terms of the previous

discussion, it {s evident that §(x) is equivalent (under scaling) to
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Bn in the continuous limit n = x. In effecting this limit two procedures
are customary: i) Neglect consideration of the ground etate energy which
is unbounded in the limit, and ii) "Normal order" all operator expres-
sions, i.e. move all creation operators to the left.

Since bbT = bTb+l, normal ordering of (4.18) and neglect of the

ground state energy impiy

- _onte 1 atet
ﬂn = (E, y)Ban 5 y6'6'6 6 . (4.24)

nnnn
Thus to put (4.23) in standard form for quantum analysis, let

A=¢ exp[-i(E0-2J-y)t] (4.25)
and scale time as t » t/J. Then (4.23) becomes

io, + o+ X0

¢ =0 (4.26)

where a subscript notation is used for the partial derivatives. Under

quantization ¢ + $ and (4.26) becomes the operator equation

b, + b+ 0700 = 0 (4.27)
with energy operator

A= faxbld, - 330 axd'alad (4.28)
number operator

= ax’s . (4.29)
and momentum operator

P=-i] dx@Tax . (4.30)
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The quantum inverse scattering method provides exact wavefunctions,

j¢>, that diagonalize R, P and B as follows (Wadati 1985).

Ny = N> (4.31)
where

N = integer > 0 , (4.32)

Ply> = Nply> (4.33)

where p is a real number, and

2
Rl = p? + X (W) 19 (4.34)
48J

Furthermore in the limit } + 0 (Thacker and Wilkinson 1979)
o> » § dx e P%T 0> . (4.35)

Equations (4.32) and (4.34) imply an overtone series

€(N) = EU + ENE (4.36)
L
where E- « N and
NL 2 4
E - = - —1—5 N, (4.37)
48J

Rohr-Sommerfeld quantization

In the parameter renge y = J, no exact quantization procedure is

known to the present autaor. It is, however, possible to impose
elementarv quantum conditions on stationary solutions of (4.10).

Writing such a solution in the form
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o

Y E
A = [%] a exp[-i(j2 + w)t] (4.38)

reduces (4.10) to the standard form

wo +a g to g, ta =0 (6.39)

Using a shooting method (Scott and MacNeil 1983) it is possible to find
a family of numerical solutions for (4.39) with the following proper-

ties: i) a_ = a il ~ > iii i = 0. m
8: i) a -0’ ii) Forn > 0, o > ¢ ., and iii) ﬁiz a =0. Fro

such a solution the conserved quantities H and N defined in (4.8) and

(4.11) are readily calculated as

N=33al (4.40)
Y n
n
and

3a 3 o

n n n-1 1 2 n n
H(N) =jE - J ———|N -7 yN* —— . (4.41)

o s 02 2 2 2
ol 2 a
n n
n

Bohr-Sommerfeld quantization is effected by noting that stationary
solutions are of the form

An(t) = A exp[i0(t)] where

8 = dH(N)/dN . (4.42)
Thus N and @ are conjugate variables and the quantum condition

§ Nd® = 2n(integer) (4.43)

together with the definition of N (4.11) imply
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N = integer > 0 . (4.44)

Equation (4.41) has the form

E(N) = EF + gV (6.45)
where
- &
! ¢ al‘l
AL _1; yNz n 5 (4.46)
b3 uz
n

In the limit J << y, a << a for |n| > 1 so (4.46) evidently
reduces to (4.22). 1In the limit ¢ << J it is straightforward to show
that (4.46) reduces <o (4.37). Thus (4.46) is expected to provide an
accurste celculation of ENL over the entire parameter range and is

sketched in Fig. 4.
Figure 4 here (for legend see p. 26)

It is now possible to consider how data from the overtone series
for the 1650 t:m-1 band in acetanilide compares with these calculations.

From (3.2) and (3.10)

= 11.3 . (4.47)

Figure 4 shows that this lies in the range for which

2

1
E(N) - EoN s 3 yN (4.48)



(T3

so the line at 1650 cm-1 implies

E, = 1672.3 m ! . (4.49)

From the measured values of overtone frequency, v(N) in Table 2, the
nonlinear contributions to the overtcne spectryum can be calculated as
E'" = w(N) - NE_ . (4.50)

In Table 3 we compare these calculations with those computed from (4.48).

Table 3. Norlinear Terms in ACN Overtone Series

N -p L -1 w2
= — 2
1 22 cm” ! 22 cm”
2 g5 89

3 213 201

4 378 357

The measured values of EV are indicated oo Fig. 4.

Davydov's ansatz

We are now in a position to evaluate Davydov's analysis. In the
context of an adiabatic approximation, the wavefunction introduced in

(2.6) takes the form

6> = I an(t)BI|0> (4.51)
n

where the an(t) are solutions of (2.13). This form of the Davydov
ansatz nas the following properties.

1) In the limit J << y, it reduces to the first eigenfunction,
11>, in (4.19).

ii) In the limit y << J, it reduces to the asymptotic form of

Bethe's ansatz in (4.35).
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iii) Between these two limits, Davyduv's ansatz gives energies
that agree with Bohr-Sommerfeld calculations.
Thus one concludes that Davydov's ansatz is a useful approximation
| ]

to the exact wavefunction over the entire parameter range 0 < y/J < @

with the constraint (2.10) which implies N = 1.

BIOLOGICAL SIGNIFICANCE OF SELF-TRAPPING

Measurements on crystalline acetanilide (ACN) confirm Davydov's
theory of self-trapped states (solitons) in hydrogen bonded polypeptide
chains. Furthermore, Table 2 shows that the "N = 2" state in ACN can
absorb almost all (95%) of the free energy released in hydrolysis of
adenosine triphosphate (ATP). It is reasoncble to suppose that a
corresponding state can form on the hydrogen bonded polypeptide chains
of alpha-helix (see Fig. 1).

Over a decade ago McClare (1972a,b) argued that the tree energy
released in ATP hydrolysis should transfer rcsonantly into a protein in
order to avoid thermal degradation. To store and transport this energy
he posited an “excimer'" state in protein which would be closely related
to the amide-A band of alpha-helix at 3240 cm-1 (McClare 1974).
McClare's excimer is qualitatively similar to the "conformon' of Green
and Ji (1972) and the basic properties of both are provided by a Davydov
soliton in the "N = 2" state (Davydov 1973, 1974, 1977, 1979b & 1982a).
In the past such siegestions have been rejected or ignored by the bio-
chemical community because a localized vegion of free energv within a
protein was believed to be physically impossible. Since this view is no
longer tenable, the early proposals of Davydov, McClare, and Green and Ji
must be reevaluated. A recent paper by Careri and Wyman (1984)
suggesting a soliton mechanism for cyclic enzyme activity provides a

first step in this direction.
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Tahle 1, Physical Parepeters for Davydov's Hamiltonian

Forametey Velue Unit Refegences
K, 4l oV (Nov:hyn & Chirgadne 1976)
1 7.0 cw ! ditto
N V14 proton mans  (Hcott 10RZ)
w " newtann/meter  (ltoh & Khimanoucht 1072)
X, ﬁrlulﬂ"' newl oo (Carert ot al. (1904)
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Table 2, Overtone Series fer the ACN Soliton

N v(N)

| 1650 cm” ! (.208 V)
2 1250 (.40%)

k] 4804 (,%906)

4 631 (.782)
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Table 3. Nonlinear Terms in ACN Overtone Series

N -2
1 22 cn-l
2 95

3 212

4 378

22 t':rl'1

89
201
KL
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